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A solution of the problem of steady plane plastic flow when a smooth or rough circular cylinder rolls and slips along the boundary 
of an ideally plastic half-space is obtained. Cases of forward and backward slipping of the material along the contact surface 
with a change in the direction of contact friction are examined. Limiting values of the arc of contact and the forces acting on 
the cylinder for plastic flow is possible are obtained. 0 2003 Elsevier Science Ltd. All rights reserved. 

Problems of the rolling of a rigid cylinder along a viscoelastic half-space [l, 21 and the rolling of a smooth 
cylinder along a rigid plastic half-space [3] were considered earlier; in the latter case, the solution was 
obtained using the small-parameter method for an arc of contact that is small compared with the radius 
of the cylinder. A review of the most important investigations of the problem of rolling friction was 
also given in [l-3]. 

The rolling of a cylinder without slipping along the boundary of an elastic plastic half-space was 
analysed using the finite-element method in [4,5]. However, the large deformations which occur in the 
plastic contact zone for large loads on the cylinder, the problem of the unknown stationary boundary 
of the plastic region, and the singularity of the stress and displacement velocity fields at the point of 
intersection of the free plastic boundary with the cylinder make elastic-plastic modelling of the rolling 
and slipping of the cylinder considerably more difficult. 

The problem of the rolling and slipping smooth and rough rigid cylinders is solved below for an ideally 
plastic model of a half-space, using as a basis the hyperbolic equations of plane strain [6]. Steady plastic 
flow with the formation of a curved free boundary in front of the cylinder is examined. 

It is shown that the determination of this boundary and of the whole plastic region leads to the solution 
of a non-linear vector equation relating to pressure distribution on the contact boundary. Limiting values 
at which steady plastic flow is possible are obtained for the arc of contact and loading of the cylinder. 
For a rough cylinder, two versions of the problem are examined, with a change in the direction of the 
contact friction as a function of the direction of slip of the plastic material along the boundary of contact 
with the cylinder. The relation between this problem. The problem of rolling friction, and the rolling 
and drawing of thick blanks with plastic deformation of the surface layer is discussed. 

1. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS 

Figure 1 shows the shape of the plastic region during the rolling and slipping of a rigid circular cylinder 
along the boundary of an incompressible ideally plastic half-space [3]. The axis of the cylinder is 
considered to be stationary, but the non-deformed half-space is considered to be moving at unit velocity 
V = 1. Owing to plastic incompressibility, the points 0 and B are on the boundary y = 0. Free from 
external stresses, the boundary AB coincides with the line of flow, since the process of plastic flow is 
stationary. 

If the cylinder is smooth, the shape and size of the plastic region depend solely on the vertical force 
Q and the horizontal force F applied to the axis, and do not depend on the rotation of the cylinder, 
since the boundary conditions at the contact boundary OA are the same whether or not the cylinder is 
rotating. It the cylinder is rough, then during slip of the plastic material from point 0 towards point A, 
shear stresses of contact friction appear, creating a positing moment M. This is the case of the rolling 
of a cylinder without slipping at the point of contact with the rigid region and with forward slip of 
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V=l - 

Fig. 1 

the material on the arc of contact. When the material slips along the surface of a rough cylinder in the 
opposite direction, The contact friction stresses and moment M change signs. This is the case of the 
slipping of a cylinder without rotation or of the slipping and rotation of a cylinder with a low angular 
velocity w a backward slipping on the entire arc of contact. 

We will take as the unit of stress double the shear yield stress of the material and we will take as the 
unit of length the arc of contact OA. For plane plastic flow, the differential equations of the 5 and 11 
slip lines and Hen&y’s relations for the stresses and Geiringer’s relations for the displacement velocities 
along the slip lines take the form 

dyldx = tgcp for 5, dyldx = -ctgcp for rl (1.1) 

do-dtp = 0 along 5, do+dtp = 0 along n (l-2) 

dVs - V,,dcp = 0 along 5, dV,, + Vtd’p = 0 along n (1.3) 

where cr is the mean stress, cp is the slope of the tangent to the 5 slip line with the x axis, and I$ and V,, 
are projections of the velocity vector onto 5 and 7. 

Because the plastic flow is steady, the boundary AB, free from external stresses, coincides with the 
streamline of flow, i.e. 

tg(cp-A/4) = V,,lVX, d = -I$ on AB (1.4) 

where V, and V, are projections of the velocity vector onto the axes of the coordinates x and y, related 
to V, and I$ by the equations 

V, = Vccos’p- V,sincp, V, = Vgsincp+ V,coscp (l-5) 

Along the rigid plastic boundary OEDB the velocities are constant: V, = -1, 5 = 0. From Eqs (1.5) 
we obtain 

vF. = -coscp, V,, = sincp on OEDB (l-6) 

Since the arc of contact OA is taken to be a characteristic dimension, the radius of the cylinder R 
and the contact angle a, are related by the equation Ra, = 1. The velocity of the surface of the cylinder 
can vary in the range 0 c CUR s 1. During rolling without slipping we have ClaR = 1 at the point 0. 

If the cylinder is smooth, then the slip lines intersect the boundary OA at an angle of 7c/4. Hence we 
find 
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(P = a-n/4, O<aIa, on OA (1.7) 

In the case of a rough cylinder, shear stresses of contact friction z, arise on the boundary OA, and the 
slip lines intersect this boundary at an angle 

0 = l/2 arccos2r,, 0 I 2, I l/z W-9 

If WR > V,, where V, is the velocity of the material at the contact boundary, then forward slipping occurs, 
and an angle 8 is created between the n slip line and the tangent to OA. If WR < V, then backward 
slipping occurs with a change in the direction of zC, and an angle 8 is created between the 5 slip line 
and the tangent to OA. Therefore, the angle cp depends on the direction in which the material slips 
relative to the cylinder surface 

cp = a+0-n/2, if OR>V,; cp = a-8, if oR<V, (1.9) 

Since the velocity normal to the cylinder is zero, the kinematic boundary conditions on OA are: 
for a smooth cylinder 

vg = v, (1.10) 

for a rough cylinder 

% = v,tge, vg = v,ctge (1.11) 

during forward and backward slipping respectively. 
The slip line field and the displacement velocity field corresponding to it can only be plotted for positive 

values of the angle w of a fan centred at point A, which is defined by the following expressions: 
for a smooth cylinder 

v = R/2 - (a, + p> (1.12) 

for a rough cylinder 

Here 

yt = 3x/4-(a,+P+e), if oR>V, 
yf = d4+e-+,+p), if oR<v, (1.13) 

p = -arctg(V,lV,), (1.14) 

is the slope of the tangent to the boundary Al3 at the point A. 
The mean stress at point 0 can be found from Hen&y’s equation for the 5 slip line OEDB and 

boundary conditions (1.7)-( 1.9) when a = 0. 
For a smooth cylinder 

q) = --t/~(l+n) (1.15) 

With this value of era a rigid wedge with its apex at the point 0 is loaded to the limiting plastic state, 
since the boundary of the half-space to the left of the point 0 is stress-free. For a rough cylinder for 
forward slipping 

and for backward slipping 

Go = -bgi+37v2)+8 (1.16) 

60 = -11~ (1 +x/2)-e (1.17) 

The angle 8 is given by Eq. (1.8). Expression (1.16) shows that, during forward slipping, the load-carrying 
capacity criterion of the rigid wedge at point 0 is satisfied when z C = 0 (0 = 7c/4) at that point; it follows 
that, in such a case the plastic region shown in Fig. 1 can only be plotted for a variable contact friction 
stress with a zero value at the point 0. During backward slipping, the load-carrying capacity criterion 
of the rigid wedge at point 0 is satisfied for all values of 2,. 
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The rolling of a cylinder with forward slipping corresponds to the limiting case of the rolling of thick 
workpieces, in which plastic deformation only occurs in the surface layer, and the neutral section passes 
through the point 0. In this case, in the theory of rolling [7] based on experimental data it is assumed 
that there is a linear variation in the contact friction stresses along the arc of contact with a zero value 
in the neutral section. For the rolling of a cylinder with forward slipping we assume a linear variation 
of 2, from zero at the point 0 to a maximum value at the pointA, where the slipping velocity relative 
the cylinder surface is greatest. This agrees qualitatively with Nadai’s model in which the viscous 
resistance to shear of the contact layer is proportional to the slipping velocity [7]. 

When a cylinder rolls with backward slip, slipping over the cylinder surface occurs along the entire 
arc of contact. The limiting case of this problem is the slipping of the cylinder without rotation, when 
the slipping velocity of the material over the cylinder surface varies negligibly along the small arc of 
contact. During backward slipping the value of z, is assumed to be constant over the entire arc of contact. 
The condition ~~ = const with high contact pressures agrees more closely with experiments than 
Coulomb’s law of dry friction [7], and in technological problems of the theory of plasticity it is usually 
known as Prandtl’s law. Here ~~ is considered to be the shear strength of the material of the contact 
layer, which depends on the lubricant and the state of the contact surface and does not exceed the shear 
yield stress of the material of the main plastic region. 

The mean stress CJ decreases in absolute value along the arc of contact OA, and at the point A takes 
a value which depends on the angle w 

<T A = -‘/*(1+2w) (1.18) 

If the distribution of D along the arc of contact OA is known, then the normal pressure on the cylinder 
can be determined 

-on = -(6- ‘I2 sin20) (1.19) 

and it is possible to find the forces and torque, which, if the relation RCX, = 1 is taken into account, 
takes the form 

Q = $Olj[(-an)cosa + 2,sina]da, 
a< 

cO 
F = ~I[(-o,)sina~r,cosa]da 

cO 
(1.20) 

The upper signs relate to forward slipping, and the lower signs to backward slipping. 
For a smooth cylinder 

--CT, = -(Q- ‘12 ), A4 = z, = 0 

For a rough cylinder with forward slipping and a linear variation in TV, from the above expression 
(1.20) we find M = 1/2(QA/ac, and with backward slipping M = -q/a,. 

Conditions (1.4) and (1.12)-(1.14) show that the problem of the rolling and slipping of a cylinder 
needs to be studied in conjunction with the stress and displacement velocity fields. The governing 
equation for solving the problem can be found as follows. We will specify a constant distribution of the 
mean stress o on the boundary OA, taking into account the known values (1.15)-( 1.17) at the point 0 
and the initial approximation for the angle p. Then the values of CJ and the boundary conditions for 
the angle cp (1.7)-(1.9) determine the Cauchy data for Eqs (1.1) and (1.2) and enable the field of slip 
lines to be found in the region OAE. In the region AED the slip line field can be found by solving 
Goursat’s problem with given IS and cp on AE and at the singular point A with a known angle v 
(1.12)-(1.14). In the region ABD the inverse Cauchy problem is solved with given o and cp on AD and 
with the condition (3 = --l/z and dyldu = tg(cp - ~/4) on the unknown boundary AB. As a result we find 
the free boundaryAB and the rigid plastic boundary OEDB. We then determine the displacement velocity 
field in the plastic region from the solution of the mixed boundary-value problem for Eqs (1.3) with 
boundary conditions (1.6), (MO), and (1.11). If the steady flow condition (1.4) is satisfied on the boundary 
AB, then the distribution of 0 on OA is the solution to the problem. Since the procedure for solving 
boundary-value problems for Eqs (l.l)-(1.3) determines the slip line field with the boundary AB and 
the displacement velocity field as a function of the distribution of (T on OA, then condition (1.4) is the 
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governing equation for the unknown distribution of o on OA, which can be described in the operator 
form 

@(a) E tg(cp - x/4) - VJV, = 0 on AB (1.21) 

where Q, is the algorithm for calculating the boundary AB and the displacement velocities of the points 
of this boundary, which is implemented here in the form of numerical procedures. In this case, Eq. 
(1.21) is a non-linear, finite-dimensional vector equation, which is solved by Broyden’s iteration method 
[S] for determining the values of o at nodes on the boundary OA. 

2. NUMERICAL SOLUTION OF THE PROBLEM 

The calculation of the slip line field and the displacement velocity field with a given distribution of stress 
cr on the boundary OA is based on a finite-difference approximation of differential equation (l.l)-(1.3). 
In the regular region elementary Cauchy problems are solved with known values of ts, cp, Vc, and V,, at 
points 1 and 2 on the slip lines 5 and TI in the vicinity of an unknown point P (Fig. 2a). From Eqs (1.2) 
we find o and cp at the point P 

0 = ‘/*(6*+Q+p,+(p*)* cp = ‘$((9,+(P2-q+$) (2.1) 

where the subscripts 1 and 2 relate to the values of the variables at points 1 and 2. Then, from Eqs (1.1) 
we find the coordinates of the point P for the mean values of the angle cp between points 1 and 
P(qQ = %((pi + cp) and between points 2 and P(q+) = %((p2 -t cp): 

for (cpi) f 0 and ((p2) # 0 

x = [yZ-yl+x,tg(cp,)+XZCtg((92)l/(tg((P1)+Ctg((P2)) 

y = [x*-x, +y+tg(cp,) +Y,~g((P*W(tg((P*) + ctg(cpJ) (2.2) 

for (cpi) = 0 or ((p2) = 0 
x = x2, y = Y, 

The velocities Vc and V,, are found from Eqs (1.3) for the known value of the angle cp at the point P 

vs = wg, + <vq, + Vl),)a, - ~F3v2l~u +a,%) 

% = Wq2-WQ + V52)%- V,,qa,lN +w4 (2.3) 

a1 = ‘/2 (cp-cp,). a2 = ‘/2oP-(P2) 

where the subscripts 1 and 2 relate to the values of the velocities at points 1 and 2. 
The stress-free boundaryABis obtained by solving the elementary inverse Cauchy problems (Fig. 2b) 

from the initial point A. At the points 1 and 2 on the slip line n the values of (T and cp are known, while 
point 2 belongs to the boundary Al?, which is directed along the second principal stress. Therefore, at 
the points 2 and P of the stress-free boundary (3 = -l/z. From Eqs (1.2) for 11 line l-2 and for &, line 1-P 
we find cp at the point P 

cp = w,-02 (2.4) 

(a) (b) 

Fig. 2 
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From the differential equation of the boundary AB dyldx = tg(cp - n/4) and the differential equation 
of the 5 slip line (1.1) assuming the mean slopes of the tangents (cpi) = ‘/z(cpi + cp) and 
((p2) = i/2((p2 + cp) - 7c/4 between the points 1 - P and 2 - P, we find the coordinates of the pointp 

x = [Y,-Y*-X1tg(cp,)+X2tg((P2)l/(tg((P*)-tg((P,)). Y = Y2+(x--*)tg(%) WI 

The velocities l’c and V,, on the boundary OA are found by solving the elementary mixed problems 
(Fig. 2c) for the differential relation (1.3) on the n line 2 - P and for boundary conditions (1.10) and (1.11) 

v, = [V,, - ‘12 v&p - (P2)1/[ 1 + ‘(7 4cp- (P2)1, vg = av, (2.6) 

where for a smooth cylinder a = 1, for a rough cylinder a = tge with forward slipping and a = ctgt3 
with backward slipping; subscripts 2 in (2.6) denote the known velocities and the angle cp at point 2. 

Algorithms presented in earlier work [9, lo] for solving the basic boundary-value problems for 
hyperbolic equations of ideal plasticity are used here with the inclusion of computing procedures for 
solving the elementary boundary-value problems containing Eqs (2.1)-(2.6). These equations do not 
require iterations, owing to the linearity of differential equations (1.2) and (1.3), and therefore the 
calculation of a very detailed network of slip lines and of the displacement velocity field for a given 
distribution of CJ at 20 nodes on the boundary OA is achieved in a fraction of a second. 

Let the vector u denote the unknown values of o at N nodes on the boundary OA, and let the vector 
f denote the differences between the slopes of the tangent to the boundary AB and the velocity vector 
at N nodes on that boundary, representing the errors of the condition of stationarity (1.4) for given u. 
The algorithm for calculating the slip line field and the displacement velocity field determines the 
continuous dependence off on u, and the operator equation (1.21) takes the form of a non-linear vector 
equation of dimension N 

f(a) = 0 (2.7) 

Equation (2.7) is solved using Broyden’s method [8], which does not require the calculation of derivatives 
in the iteration process. The initial approximation of cr” was specified by the linear distribution of o on 
OA from the known value at the point 0 (1.15)-(1.17) to the value (1.18) at the pointA, assuming the 
initial approximation for the angle p = CCC,, where c > 1. The functional matrix af;:/oj at the initial point 
o” was found using the finite-difference method, solving N problems for variations of u”. 

During the rolling and slipping of a smooth cylinder with small contact angles a,, the slip line field 
(Fig. 1) approximates to Prandtl’s asymmetrical field for a smooth flat punch with constant distribution 
of o on OA and constant velocity V’ = -1 in the plastic region. In this case, Eq. (2.7) is solved in l-2 
iterations with an accuracy of ]fcjmax 6 lo4 (i = 1, 2, . . . , N) with c = 1. Increasing the parameter c 
as in the arc of contact increased ensured that Eq. (2.7) was solved with the same accuracy with a small 
number of iterations. In this case, the conditiony = 0 at point B is satisfied with an accuracy of lo-“. 

3. NUMERICAL RESULTS 

To solve the problem, a program was written that calculates the slip line fields and velocity hodographs 
for a given contact angle a, of a cylinder with a plastic region and for a given parameter of contact z, 
with forward and backward slipping. 

Figure 3 shows a slip line field with the contact pressure distribution (a) and a hodograph of the 
displacement velocities (b) during the rolling and slipping of a smooth cylinder with a contact angle 
crC = 0.4. For this version the values obtained are 

j3 = 0.676, ye = 0.495, Q = 2.049, F = 0.380 

For a smooth cylinder, the boundary conditions for the stresses and displacement velocities do not 
depend on the rotation of the cylinder, and the solutions obtained hold for different values of w with 
forward and backward slipping. As the contact angle a, increases, the angle of the centred fan v tends 
to zero, the region AED on the physical plane contracts to a line, the velocity at the singular point A 
becomes unique, and the corresponding curve A-A on the displacement velocity hodograph tends 
towards the stationary point 0. Thus, as v -+ 0 the displacement velocity of a material particle along 
the stress-free boundary AB decreases from unity at point B to zero at point A, and it then increases 
from zero to unity when the particle moves along the boundary of the cylinder from the point A to the 
point 0. A limiting value of a: = 0.453 was obtained for a smooth cylinder. 
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(a) 

0 

(b) 

Fig. 3 

(a) 

Fig. 4 

The values obtained for the rolling of a smooth cylinder with a contact angle a, = 0.2 are 

p=O.245, \~r= 1.126, Q = 2.342, F = 0.228 

with a variation of the contact pressure from 2.126 at the point A to 2.571 at point 0. For angles 
ol, =S 0.2 the slip line field approximates to a Prandtl field for a flat punch, and the results obtained are 
identical with the solution of the problem using the small parameter method [3]. For the rolling of a 
smooth cylinder with small contact angles q < 0.2 we have 

Q= $(A-a,), F=1~2a,Q; F/Q= $a, 

Figure 4 shows a slip line field with the contact pressure distribution (a) and a hodograph of the 
displacement velocities (b) for the rolling of a rough cylinder without slipping at the point 0 (OR = 1) 
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2.242 -0" 1.600 

(b) 

Fig. 5 

with contact angle a, = 0.5236 and linear distribution of z, with maximum value of 0.25 at the point 
A. This is a version of the problem with forward slipping, for which the values obtained are 

p = 0.650, \y = 0.658, Q = 2.070, F = 0.382, M = 0.239 

An increase in friction during forward slipping leads to an increase in the angle w and to an increase 
in the limiting contact angle a: as w + 0. 

The ratio F/Q can be treated as the coefficient of rolling friction induced by the asymmetry of the 
plastic region relative to they axis passing through the axis of the cylinder. Below we give values of a: 
for the rolling of a cylinder with forward slipping as a function of the contact friction stress 2, at the 
point A, and the integral characteristics of the process Q and F and the ratio F/Q 

7, 0.0 0.1 0.2 0.3 0.4 

a: 0.453 0.552 0.650 0.750 0.875 

Q 1.951 1.885 I.828 1.774 I.692 
F 0.400 0.416 0.427 0.435 0.440 

F/e 0.205 0.220 0.233 0.245 0.260 

In the case of forward slipping for given values of z,, the contact angles a, can be found for which 
the force F equals zero. This is the limiting case for the rolling of thick workpieces without penetration 
of plastic strains through the thickness of the workpiece and with plastic deformation of the surface 
layer only. 

Figure 5 shows a slip line field with the contact pressure distribution (a) and a hodograph of the 
displacement velocities (b) for the rolling of a rough cylinder with backward slipping (0 s OR c 0.53) 
and with contact angle a, = 0.2 and constant contact friction stress 2C = 0.25. The values obtained for 
this version are 

f3 = 0.44, \y = 0.667, Q = 1.922, F = 0.433, M = -1.25 

An increase in friction during backward slipping leads to a decrease in w, in the limiting contact angle 
a;, and in the normal pressure on the cylinder, with a more even distribution of the latter compared 
with a smooth cylinder and with the rolling of a rough cylinder with forward slipping. 

When o = 0 we obtain the slipping of a circular punch with a stationary plastic region formed in 
front of it, which depends on the vertical force Q and on the contact friction 2,. This problem also 
describes the drawing of a thick rod through circular dies with plastic deformation of the surface layer 
only. When rC -+ l/z with backward slipping cxC -+ 0, the plastic regionABLE degenerates to the point 
A, and the region OAE degenerates to the shear line with uniform pressure o, = l/z + n/4 on the contact 
line OA. This is the case of the slipping of an absolutely rough flat punch along the boundary of a plastic 
half-space. 
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For practical applications, a version of the program has also been written that calculates the streamlines 
and the non-uniformity of the distribution of the accumulated plastic strain in the plastic region and 
over the thickness of the deformed layer beyond the cylinder. 

Calculations of the rolling and slipping of a cylinder taking into account the contact friction 2, show 
the considerable influence of this parameter on the shape of the plastic region and on the forces and 
torque acting on the cylinder. For small contact angles and with forward slipping increase in rc leads 
to a decrease in the horizontal force F and in the ratio F/Q. A computer program enables the values 
of a, and rc to be found for which F = 0. These are the limiting conditions for rolling thick workpieces 
with free ends. When rc is increased further, the force F increases, but in the opposite direction. For 
the limiting conditions of the rolling of thick workpieces, a change in the direction of the force F results 
in a change in the direction of the external “tension” applied to the workpiece, which, with an appropriate 
value of the vertical force Q applied to the roll, leads to stationary plastic flow of the surface layer. 

The model of backward slipping is of practical interest in the technology of the surface plastic 
deformation of thick workpieces using a slipping, curved (in this case circular) tool, taking into account 
the contact friction. An increase in 2, leads to an increase in the force F and the ratio F/Q. In this case, 
the computer program enables the variation in the forces F and Q and in the shape of the plastic region 
to be analysed until it degenerates into the shear line of the surface layer. 
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